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Advancing exposure science

Implications of better models at the intersection of
air pollution and heat

Advancing climate~health epidemiology with Earth
observations

Goal: leverage Earth observations to enhance exposure
assessment for epidemiological analyses with cohorts and large
health registries



Premise: Getting exposures right matters

Environmental exposures change dynamically over
time and space

Example: substantial intra-urban temperature variation
within urban heat archipelago

Accurate estimates required for epidemiological
studies

Our group builds geostatistical models with satellite
data -- and investigates the implications of
Improvements




Combining satellite-derived predictors with
meteorological, topographical & land use covariates

Satellite data
Aerosol Optical Depth (AOD) informs models for PM, ¢

Land Surface Temperature (LST) informs models for air temperature
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Layering information to estimate exposures
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Layering information to estimate exposures

and meteorology

@

Ground monitoring network

(Mexico City]




Layering information to estimate exposures

Satellite
aerosol optical depth (AOD)

and meteorology
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Technical challenges in applied remote sensing

Staggering data volume

Missing data (clouds, nighttime, indoors)

Measurement error (complex atmospheric effects)




Predictive models trained on ground stations

(Sub)Daily reconstruction with good spatial resolution

Flexible machine-learning models capture complex
relations

But great care is needed to avoid overfitting!

Just et al. Advancing methodologies for applying machine
learning and evaluating spatiotemporal models of fine
particulate matter (PM, 5) using satellite data over large
regions. Atmos Env. 2020;239:117649.




Daily high-resolution temperature and PM, .

across the Continental USA
(developed originally with support from NIH ECHO OIF)
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[Preprint]: Just et al. https://doi.org/10.1002/essoar.10512861.1
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Daily high-resolution temperature and PM, .
across the Continental USA
(developed originally with support from NIH ECHO OIF) %

Example: mean temperature August 11, 2021
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[Preprint]: Just et al. https://doi.org/10.22541/esso0ar.167591086.68441300/v1




XIS: XGBoost-IDW Synthesis

Strengths of our geospatial prediction pipeline:
Performant
Recent/Updatable
Still improving

Limitations of reconstruction:

Not a forecasting tool

Not a digital twin (no simulation/manipulation)
AR



XIS Empirical comparisons with other models




XIS PM, . comparison with EPA FAQSD

EPA produces daily tract-level PM, : by fusing 12 km
chemical transport model (CMAQ) with AQS site data

We compared models only with EPA AQS sites not used by
either model (e.g., 310 sites with 76,220 days in 2018)

When we made predictions to the tract centroid, averaging
across all years:

we have 16% lower Mean Absolute Error
Making predictions to exact monitor locations:
we have 22% lower Mean Absolute Error

[Preprint]: Just et al. https://doi.org/10.1002/essoar.10512861.1
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XIS Temperature comparison with 3 gridded models

Our minimum temperature model has much lower prediction
error across all station-days, all years 2014-2021 (e.g., in 2019
this was 2,702,679 observations):

28% of the MSE of PRISM (4 km)
34% of the MSE of gridMET (4 km)
46% of the MISE of Daymet (1 km)

Evaluated at 10,000 randomly selected personal weather
stations (of those not used by XIS)

[Preprint]: Just et al. https://doi.org/10.22541/esso0ar.167591086.68441300/v1
/A

15




Daily minimum temperature over NYC in a 2021 heatwave

Daymet XIS
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Implications of having better models




Temperature during a heatwave:
NYC Metro Area
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Temperature during a heatwave:
NYC Metro Area
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Model performance
In 2019:

RMSE of XGBoost: 1.4 C
RMSE of NLDAS-2: 2.4 C

Overall: our XGBoost predictions
have 1/3 MSE of NLDAS-2 values




Air temperature in a heatwave and social vulnerability

CDC’s Social Vulnerability Index at Census Tracts

— 15 Census variables including SES, housing, transportation, language
isolation, etc.

— Results in a proportional measure fromOto 1

Mixed effects linear model:
— Dependent: Spatially-weighted air temperature prediction at Census Tract
— Independent:
* Fixed: Intercept and the CDC SVI
 Random: County-level intercepts, slopes of CDC SVI

Comparing slopes when using XGBoost model versus NLDAS-2 temperature

20




Air temperature in a heatwave and social vulnerability
Underestimated disparities?
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Social Vulnerability and PM, .
(Nationwide, 2018 average)

Mixed-effects model with a fixed effect for vulnerability, per-
county random slopes and intercepts of vulnerability

Dependent variable was the 2018 average PM, - concentration at
the center of population of each tract (71,619 US Census tracts)

Our fixed effect of vulnerability was estimated as:
0.655 pg/m3 (95% Cl 0.606, 0.703) with our model (XIS-PM, c)

Using the EPA FAQSD:
0.081 pg/m3 (95% CI [0.056, 0.105]) for FAQSD

22




Theme:

Better exposure models reveal
previously under-estimated
disparities and health impacts




Advancing climate and health epidemiology




* 4,800 blacks enrolled from outpatient and inpatient clinical sites across the
Mount Sinai Health System into the BioMe biobank

* E ¢ Urban environment including New York City and New Jersey
e n e nv S u y » No exclusion criteria

e All individuals linked to electronic health record (EHR)

« Individuals genotyped using T4 o For each patient,
Affymetrix 6.0 gene chip (909,600 Ak | estimate average
SNPs) yearly PM, ; level at 1

o Extracted APOL1 genotype and x 1 km resolution

Gene Chip

defined: using aerosol optical
H e high-risk: G1/G1, G2/G2, or depth reported by
Ambient PM, ; and a2 NASA satelit
‘ o Low-risk: G1/G0, GO/GO, or
G2/Go

genetic risk allele

interact in chronic

o L ogistic regression adjusted for age, sex, 10 genetic PCs, T2D, baseline eGFR,
and Medicaid status
» Assess interaction effect of PM, ; and APOL1 genotype on CKD risk
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Paranje et al. CJASN 2020. Yearly PM, s Exposure (ug/m°) 25




Daily exposure to PM, - and 1.5 million deaths:
A time-stratified case-crossover analysis in the Mexico
City Metropolitan Area

Daily exposures for each of 586 sub-county regions from our satellite-based
geostatistical model

1,479,950 non-accidental deaths (>18 years-old) 2004-2019

Largest acute air pollution analysis in Central Mexico

Cause-specific mortality, per 10pug/m?3 PM, < (lagyg):

— hypertensive disease 2.28% (95%Cl: 0.26%—4.33%)
— acute ischemic heart disease 1.61% (95%Cl: 0.59%—2.64%)
— hemorrhagic stroke 3.63% (95%Cl: 0.79%—6.55%)
— chronic respiratory disease 2.49% (95%Cl: 0.71%—4.31%)
— influenza and pneumonia 4.91% (95%Cl: 2.84%—7.02%)
— diseases of the liver 1.85% (95%Cl: 0.31%—3.41%)
— renal failure 3.48% (95%Cl: 0.79%—6.24%)

Gutiérrez Avila et al. Env Health 2023 https://doi.org/10.1186/s12940-023-01024-4



ldentifying susceptible sub-populations
Using ridge regression in massive case-crossover analyses

Group-specific categories associated with PM, 5
(Sex:Age-group:ICD-Group code)

F.65-79.Respiratory

Overall, a 10ug/m?3 higher lagos PM, 5 associated with: o Foos Fesplay
(95%ClI: 1.3% to 1.8%)

" F80+ Circulatory
F.80+. quesnve

e
M
F65-79.G nounna‘ry
Joikind ==
F.80+ Gemtﬁunnﬁry -
F4056;190|§§E€§ ———
— Respiratory mortality, 65-79 y/o: 2.6% '\ - 6579 Circuatory .
50 fhratory
(95%CI: 1.6% to 3.6%) ‘ & S ——-—

— Respiratory mortality, 280 y/o: 2.5%
(95%CI: 1.4% to 3.3%)
—  Circulatory mortality, 280 y/o: 2.2%

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
I
|
I

(95%Cl: 1.5% to 2.9%) U SHER —
£40-64 Mental —-—
A %65 79.Mental —_—
1 !
F[' 5-79. Other E——
_ _ m %‘.‘f&?ﬁa??a%?é?i Group specc
— Respiratory mortality, 18-39 y/o: 2.4% FY5:56 Hospratory . pesocations
(95%Cl: 1.6% to 3.2%) ~ e Bee : e
— Respiratory mortality, 40-64 y/o: 2.2% ; — Males
(95%Cl: 1.3% to 3.3%) 0 EE578 Digestie . - Reference (Al)
— Digestive mortality, 80+ y/o: 2.0%
(95%Cl: 1.0% to 2.9%) -1 0 1 2 5

Percent increase and 95% Cl per 10 ug/m3 lag01
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Opportunities and Infrastructure Fund (OIF)
grant awarded April 2018
Environmental influences ”ECH(?—Wlde platform for studying air |
& on Child Health Outcomes pollution, temperature, and greenness using

satellite remote sensing with daily high-
resolution national exposure estimates”

A program supported by the NIH

Our temperature and air pollution models being

used in a study of >50,000 children across the USA
with deeply phenotyped cohorts e

D
~ Outcomes:

Preterm / Low Birthweight
Neurodevelopment
Obesity

> Respiratory

Child Wellness




Linking to large registries

Comprehensive NYS hospitalization records with dates and
exact residential addresses 2007-2023

Statewide Planning and Research Cooperative System (SPARCS)

Year 3 of 5-year RO1 for the NIEHS Outstanding New Environmental
Scientist (ONES) RFA:

“Extreme temperature, humidity, air pollution and

spontaneous preterm birth”




Why study heat & air pollution
together?

* Correlated episodic exposures

e Shared physiologic pathways

* Acute etiologic window



It’s all in the timing

“Why today?”
What is the relevant etiologic window?

Peak Exposures Matter!

Epidemiologic approaches focused on timing
and short-term exposure » response estimation
* Distributed Lag Nonlinear Modeling (DLNM)
* Case crossover modeling



No one breathes 24-hour averaged air



Adding
gaseous air
pollutants
with hourly
TEMPO
instrument T —
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Short-term variation in air pollution and health
is understudied

Exposure reconstruction:

Previous satellite-based estimates have
relied on LEO single-overpass AOD

estimate 24-hour average PM, 5 to
reflect regulatory standards/methods?

5 Concentartion [ug'm3)

O

PM2.5 Concentartion [ug/m3)

PM2

“In fact, prior to recent EPA regulatory proposals for
tightening the NAAQS for PM and Os, the EPA's Clean
Air Science Advisory Committee advised the EPA to
give a scientific rationale for the 24hr PM,y averaging
time in the NAAQS” — Delfino et al. EHP 1998

Phofo credit: archive.epa.ov



Examples of short-term cardiovascular exposure-response
in air pollution epidemiology

Case-crossover matched on hour and day of week in 176 patients with
implantable cardioverter-defibrillators with 328 episodes of atrial fibrillation
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Risk of atrial fibrillation with Air Pollution in Patients Living Within 26 km of the Air Pollution Monitoring Site
(Link et al., JACC 2013)



Exposure-response curves from hourly
exposures with hourly outcomes!

Dataset: Linked hourly NLDAS-2 temperature by zipcode of residence
for 791,695 primary MI hospital admissions (lag 0 = admit hour minus 3)
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Can ultra short-term changes in ambient temperature trigger myocardial infarction?

2020. Rowland et al. Env Int.



Machine-learning to refine AOD
% remote sensing

Article

Correcting Measurement Error in Satellite Aerosol
Optical Depth with Machine Learning for Modeling
PM; 5 in the Northeastern USA

Allan C. Just I* MghtMDCl , Alexandra Shtein 2, Michael Dorman 2
Alexei Lyapustin 3 and Itai Kloog

* Match up satellite AOD with ground-based AOD from AERONET

* train XGBoost on the difference using endogenous predictors of
retrieval error (no assimilation of outside info)

* Construct a correction factor

Mﬁﬂﬂmﬂhjhﬂmﬁnmmhm

""""

Just et aI Remote Sens. 2018, 10(5) 803 https://doi.org/10. 339O/r510050803

38
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Reproducible machine-learning framework for
reducmg retrieval error for Earth observations
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What does t{his cleanup look like?

~

<Co rrected

AOD
BE 03
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Maps of typical MAIAC and Corrected AOD. Day selected as having the median improvement
in MSE at AERONET sites (2005-01-14). The map is centered on Arkansas.



Corrected

Raw

Maps of MAIAC and Corrected AOD over the Mid-Atlantic US during a documented
exceedance event with downmixing of long-range transported smoke from Canadian
wildfires (June 10, 2015).



Does cleanup improve agreement
with AQS PM, ?

* We examined 1,642,701 observations of AQS PM, ¢ on
1,436,978 cell-days with AOD. The correlation of the
observations with the original satellite values was 0.440,
compared to 0.495 with our corrected values.

* In ayear-level comparison, we took cell-years with at least
100 days of AQS observations and 10 days per month of satellite
observations for at least 12 months. Obtaining 911 cell-years, we
compared official AQS annual means to the yearly means of
satellite observations, computed with daily means weighted
according to how many days of the year to which each day was
closest. The result was a correlation with the original satellite
values of 0.329, compared to 0.549 with our corrected values.
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Informing public health & policy

Improved epidemiological models can:

— Be combined with climate projections to estimate
long-term impacts of climate change

— Be incorporated in health impact analyses to
compare policy scenarios

— Inform current medical and health-based decision-
making (e.g., ProAire — Mexico’s air quality planning)



Satellites are a key tool for monitoring the
consequences of climate change

New sensors, new opportunities!

PM, ., temperature, humidity
Ozone, NO,, SO,
Vegetation/Greenness

Wildfires and flaring

NATIONAL AERONAUTICS )
AND SPACE ADMINISTRATION i
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Newer satellites — better products

Higher-resolution satellite products reveal patterns
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