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Outline
• Advancing exposure science

• Implications of better models at the intersection of 
air pollution and heat

• Advancing climate~health epidemiology with Earth 
observations

Goal: leverage Earth observations to enhance exposure 
assessment for epidemiological analyses with cohorts and large 
health registries



Premise: Getting exposures right matters

Environmental exposures change dynamically over 
time and space 

Example: substantial intra-urban temperature variation 
within urban heat archipelago

Accurate estimates required for epidemiological 
studies 

Our group builds geostatistical models with satellite 
data -- and investigates the implications of 
improvements
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Combining satellite-derived predictors with 
meteorological, topographical & land use covariates

Satellite data
Aerosol Optical Depth (AOD) informs models for PM2.5

Land Surface Temperature (LST) informs models for air temperature

AEROSOL

SURFACE

AEROSOL
Change in intensity of light
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Layering information to estimate exposures



Layering information to estimate exposures



Layering information to estimate exposures



Technical challenges in applied remote sensing

Staggering data volume

Missing data (clouds, nighttime, indoors)

Measurement error (complex atmospheric effects)



Predictive models trained on ground stations

(Sub)Daily reconstruction with good spatial resolution

Flexible machine-learning models capture complex 
relations

But great care is needed to avoid overfitting!

Just et al. Advancing methodologies for applying machine 
learning and evaluating spatiotemporal models of fine 
particulate matter (PM2.5) using satellite data over large 
regions. Atmos Env. 2020;239:117649. 



Daily high-resolution temperature and PM2.5 
across the Continental USA 
(developed originally with support from NIH ECHO OIF)

Example: 24-hour PM2.5
July 10, 2021
(different color scale)

Example: average 24-hour PM2.5
Meteorologic seasons of 2019

[Preprint]: Just et al. https://doi.org/10.1002/essoar.10512861.1

https://doi.org/10.1002/essoar.10512861.1


Daily high-resolution temperature and PM2.5 
across the Continental USA 
(developed originally with support from NIH ECHO OIF)

Example: mean temperature August 11, 2021

(different color scale)

[Preprint]: Just et al. https://doi.org/10.22541/essoar.167591086.68441300/v1



XIS: XGBoost-IDW Synthesis

Strengths of our geospatial prediction pipeline:
 
 Performant 

 Recent/Updatable

 Still improving 

Limitations of reconstruction: 
 Not a forecasting tool
 Not a digital twin (no simulation/manipulation)12



XIS Empirical comparisons with other models
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XIS PM2.5 comparison with EPA FAQSD

EPA produces daily tract-level PM2.5 by fusing 12 km 
chemical transport model (CMAQ) with AQS site data

We compared models only with EPA AQS sites not used by 
either model (e.g., 310 sites with 76,220 days in 2018)

When we made predictions to the tract centroid, averaging 
across all years:
 we have 16% lower Mean Absolute Error
Making predictions to exact monitor locations:
 we have 22% lower Mean Absolute Error
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[Preprint]: Just et al. https://doi.org/10.1002/essoar.10512861.1

https://doi.org/10.1002/essoar.10512861.1


XIS Temperature comparison with 3 gridded models

Our minimum temperature model has much lower prediction 
error across all station-days, all years 2014-2021 (e.g., in 2019 
this was 2,702,679 observations):

28% of the MSE of PRISM (4 km) 
34% of the MSE of gridMET (4 km) 
46% of the MSE of Daymet (1 km)

Evaluated at 10,000 randomly selected personal weather 
stations (of those not used by XIS)
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[Preprint]: Just et al. https://doi.org/10.22541/essoar.167591086.68441300/v1



Daily minimum temperature over NYC in a 2021 heatwave
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Implications of having better models
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Temperature during a heatwave: 
NYC Metro Area

Midnight on 2011-07-22 18



Temperature during a heatwave: 
NYC Metro Area

Model performance
In 2019:

RMSE of XGBoost: 1.4 C
RMSE of NLDAS-2: 2.4 C

Overall: our XGBoost predictions 
have 1/3 MSE of NLDAS-2 values 



Air temperature in a heatwave and social vulnerability 

CDC’s Social Vulnerability Index at Census Tracts 
– 15 Census variables including SES, housing, transportation, language 

isolation, etc.
– Results in a proportional measure from 0 to 1

Mixed effects linear model: 
– Dependent: Spatially-weighted air temperature prediction at Census Tract 
– Independent:

• Fixed: Intercept and the CDC SVI
• Random: County-level intercepts, slopes of CDC SVI  

Comparing slopes when using XGBoost model versus NLDAS-2 temperature
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21
(Carrión et al., 2021)

NLDAS-2: 0.18 C
(95% CI 0.12, 0.25)

XGBoost: 0.71 C
– (95% CI 0.60, 0.82) 

Air temperature in a heatwave and social vulnerability
 Underestimated disparities?

Tract-level 
analysis across 
434 counties



Social Vulnerability and PM2.5 
(Nationwide, 2018 average)
Mixed-effects model with a fixed effect for vulnerability, per-
county random slopes and intercepts of vulnerability

Dependent variable was the 2018 average PM2.5 concentration at 
the center of population of each tract (71,619 US Census tracts)

Our fixed effect of vulnerability was estimated as: 
0.655 μg/m3 (95% CI 0.606, 0.703) with our model (XIS-PM2.5)

Using the EPA FAQSD:
0.081 μg/m3 (95% CI [0.056, 0.105]) for FAQSD
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Theme: 
Better exposure models reveal 
previously under-estimated 
disparities and health impacts



Advancing climate and health epidemiology
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Gene*Env study

Ambient PM2.5 and 

genetic risk allele 

interact in chronic 

kidney disease

Paranje et al. CJASN 2020. 

environmental factors influence kidney risk. Limitations
include lack of replication, complete personal exposure
data, enrollment albuminuria and detailed socioeconomic
information. Additionally the cross-sectional nature of our
studymay not capture the effect of varying PM2.5 exposure
over time. Further, as we defined the composite outcome
as both prevalent/incident CKD and kidney failure, it is
possible that PM2.5 exposure in the year before enrollment
contributes more to incident than prevalent CKD. If
replicated, it would represent the first example where a
commongenotype interactswith a commonenvironmental
exposure for kidney disease and exacerbates ethnic
disparities.
In conclusion, in a cohort of 4800 blacks we demonstrated

a significant interaction effect between APOL1 high-risk
genotype and PM2.5 for kidney disease.

Disclosures
Dr. Nadkarni is cofounder of and owns equity in Pensieve Health
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owns equity and options in RenalytixAI. Dr. Nadkarni also reports
receiving consulting fees from AstraZeneca, BioVie, Inc., GLG Con-
sulting, and Reata Pharmaceuticals. Dr. Bottinger, Dr. Chaudhary,
Dr. Cooper, Dr. DeFelice, Dr. Glicksberg,Dr.Horowitz,Mr. Jaladanki,
Dr. Just, Mr. Kapoor, Dr. Manna, Mr. O’Hagan, Mr. I. Paranjpe, and
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"#Logistic regression adjusted for age, sex, 10 genetic PCs, T2D, baseline eGFR,
and Medicaid status

"#Assess interaction effect of PM2.5 and APOL1 genotype on CKD risk

Statistical Analysis

Gene Chip

"#For each patient,
  estimate average
  yearly PM2.5 level at 1
  x 1 km resolution
  using aerosol optical
  depth reported by
  NASA satellite

A Cohort
"#4,800 blacks enrolled from outpatient and inpatient clinical sites across the

Mount Sinai Health System into the BioMe biobank
"#Urban environment including New York City and New Jersey

"#No exclusion criteria
"#All individuals linked to electronic health record (EHR)

"#Individuals genotyped using
  Affymetrix 6.0 gene chip (909,600
  SNPs)
"#Extracted APOL1 genotype and
   defined:

"#high-risk: G1/G1, G2/G2, or
  G1/G2
"#Low-risk: G1/G0, G0/G0, or
  G2/G0

Figure 1. | Study methodology and APOL1 interaction for CKD risk. (A) Flowchart of methodology used in this study. (B) Proportion of CKD/
kidney failure stratified by APOL1 genotype with higher average PM2.5 exposure in the year before enrollment. Shaded gray regions represent
95% confidence intervals obtained from a logistic regression model adjusted for age, sex, body mass index, 10 genetic principal components,
historyof type2diabetes,Medicaid status, andbaseline eGFR. For purposes of visualizationof the slopes, the values of continuous predictors are
computed at the cohort mean of each covariate. Frequency distribution at top represents the distribution of mean PM2.5 in our cohort. NASA,
National Aeronautics and Space Administration; PC, principal component; PM2.5, fine particulate matter ,2.5 mm; T2D, type 2 diabetes.

402 CJASN
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Daily exposure to PM2.5 and 1.5 million deaths: 
A time-stratified case-crossover analysis in the Mexico 
City Metropolitan Area

Daily exposures for each of 586 sub-county regions from our satellite-based 
geostatistical model

1,479,950 non-accidental deaths (≥18 years-old) 2004-2019

Largest acute air pollution analysis in Central Mexico

Cause-specific mortality, per 10μg/m3 PM2.5 (lag06): 
– hypertensive disease  2.28% (95%CI: 0.26%–4.33%)
– acute ischemic heart disease 1.61% (95%CI: 0.59%–2.64%)
– hemorrhagic stroke  3.63% (95%CI: 0.79%–6.55%)
– chronic respiratory disease 2.49% (95%CI: 0.71%–4.31%)
– influenza and pneumonia 4.91% (95%CI: 2.84%–7.02%)
– diseases of the liver  1.85% (95%CI: 0.31%–3.41%)
– renal failure   3.48% (95%CI: 0.79%–6.24%)

26
Gutiérrez Avila et al. Env Health 2023 https://doi.org/10.1186/s12940-023-01024-4



Identifying susceptible sub-populations
Using ridge regression in massive case-crossover analyses

Overall, a 10μg/m3 higher lag01 PM2.5 associated with:

1.5% higher mortality (95%CI: 1.3% to 1.8%) 

3 largest associations in Females for: 
– Respiratory mortality, 65-79 y/o: 2.6% 

 (95%CI: 1.6% to 3.6%) 
– Respiratory mortality, ≥80 y/o: 2.5% 

 (95%CI: 1.4% to 3.3%)
– Circulatory mortality, ≥80 y/o: 2.2% 

 (95%CI: 1.5% to 2.9%)

3 largest associations in Males for: 
– Respiratory mortality, 18-39 y/o: 2.4% 

 (95%CI: 1.6% to 3.2%) 
– Respiratory mortality, 40-64 y/o: 2.2% 

 (95%CI: 1.3% to 3.3%)
– Digestive mortality, 80+ y/o: 2.0% 

 (95%CI: 1.0% to 2.9%)
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Group-specific	categories	associated	with	PM2.5
(Sex:Age-group:ICD-Group	code)	

Slide courtesy of Dr. Iván Gutiérrez Avila



Opportunities and Infrastructure Fund (OIF)
grant awarded April 2018
“ECHO-wide platform for studying air 
pollution, temperature, and greenness using 
satellite remote sensing with daily high-
resolution national exposure estimates“

Our temperature and air pollution models being 

used in a study of >50,000 children across the USA 

with deeply phenotyped cohorts

Outcomes:
Preterm / Low Birthweight
Neurodevelopment
Obesity
Respiratory
Child Wellness



Linking to large registries
Comprehensive NYS hospitalization records with dates and 
exact residential addresses 2007-2023

Statewide Planning and Research Cooperative System (SPARCS)

Year 3 of 5-year R01 for the NIEHS Outstanding New Environmental 
Scientist (ONES) RFA:

“Extreme temperature, humidity, air pollution and 
spontaneous preterm birth”



Why study heat & air pollution 
together?

• Correlated episodic exposures

• Shared physiologic pathways

• Acute etiologic window



It’s all in the timing

“Why today?”

What is the relevant etiologic window?

Peak Exposures Matter! 
Epidemiologic approaches focused on timing 
and short-term exposure ￫ response estimation
• Distributed Lag Nonlinear Modeling (DLNM)
• Case crossover modeling



No one breathes 24-hour averaged air



Adding 
gaseous air 
pollutants 

with hourly  
TEMPO 

instrument

(launched 
April 2023)



TEMPO’s footprints ~1.6km * 4.5km

2019 modeled annual average PM2.5 in 586 sub-
county regions and 778 intersecting TEMPO cells



Short-term variation in air pollution and health 
is understudied

Exposure reconstruction:
Previous satellite-based estimates have 
relied on LEO single-overpass AOD

estimate 24-hour average PM2.5 to 
reflect regulatory standards/methods?

Photo credit: archive.epa.gov

“In fact, prior to recent EPA regulatory proposals for 
tightening the NAAQS for PM and O3, the EPA's Clean 
Air Science Advisory Committee advised the EPA to 
give a scientific rationale for the 24hr PM10 averaging 
time in the NAAQS” – Delfino et al. EHP 1998



Examples of short-term cardiovascular exposure-response 
in air pollution epidemiology

Case-crossover matched on hour and day of week in 176 patients with 
implantable cardioverter-defibrillators with 328 episodes of atrial fibrillation

Risk of atrial fibrillation with Air Pollution in Patients Living Within 
26 km of the Air Pollution Monitoring Site (Link et al., 2013)

Risk of atrial fibrillation with Air Pollution in Patients Living Within 26 km of the Air Pollution Monitoring Site

(Link et al., JACC 2013)



Exposure-response curves from hourly 
exposures with hourly outcomes!

Can ultra short-term changes in ambient temperature trigger myocardial infarction? 

2020. Rowland et al. Env Int. 

Dataset: Linked hourly NLDAS-2 temperature by zipcode of residence 
for 791,695 primary MI hospital admissions (lag 0 = admit hour minus 3)

Panel B illustrates the 
cumulative association 
for an increase from 
median temperature 
(11 °C) to the 95th 
percentile (27 °C) for 
lags 0–6. 
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Abstract: Satellite-derived estimates of aerosol optical depth (AOD) are key predictors in particulate
air pollution models. The multi-step retrieval algorithms that estimate AOD also produce quality
control variables but these have not been systematically used to address the measurement
error in AOD. We compare three machine-learning methods: random forests, gradient boosting,
and extreme gradient boosting (XGBoost) to characterize and correct measurement error in the
Multi-Angle Implementation of Atmospheric Correction (MAIAC) 1 ⇥ 1 km AOD product for
Aqua and Terra satellites across the Northeastern/Mid-Atlantic USA versus collocated measures
from 79 ground-based AERONET stations over 14 years. Models included 52 quality control, land
use, meteorology, and spatially-derived features. Variable importance measures suggest relative
azimuth, AOD uncertainty, and the AOD difference in 30–210 km moving windows are among
the most important features for predicting measurement error. XGBoost outperformed the other
machine-learning approaches, decreasing the root mean squared error in withheld testing data by
43% and 44% for Aqua and Terra. After correction using XGBoost, the correlation of collocated AOD
and daily PM2.5 monitors across the region increased by 10 and 9 percentage points for Aqua and
Terra. We demonstrate how machine learning with quality control and spatial features substantially
improves satellite-derived AOD products for air pollution modeling.

Keywords: aerosol optical depth (AOD); MAIAC; gradient boosting; AERONET; machine learning;
PM2.5; MODIS; air pollution; measurement error

1. Introduction

A useful public health application of satellite remote sensing is to augment sparse monitoring
networks and cover large time and space domains when modeling particulate matter for epidemiologic
health studies [1]. Recent refinements in remote sensing algorithms have resulted in higher resolution
products such as the 1 ⇥ 1 km resolution Multi-Angle Implementation of Atmospheric Correction
(MAIAC) retrieval algorithm estimating the Aerosol Optical Depth (AOD) as a measure of the density
of light scattering particles in the atmospheric column [2,3]. The MAIAC product, derived for the
Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, like earlier lower spatial
resolution AOD products (e.g., 10 km ⇥ 10 km Deep Blue and Dark Target retrieval algorithms), is a
key predictor in leading statistical models estimating PM2.5 at the ground level [4–6].

Remote Sens. 2018, 10, 803; doi:10.3390/rs10050803 www.mdpi.com/journal/remotesensing

Just et al. Remote Sens. 2018, 10(5), 803 https://doi.org/10.3390/rs10050803
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Reproducible machine-learning framework for 
reducing retrieval error for Earth observations

Configurable
Software tool

Cases Sites RMSE, raw RMSE, 
corrected

Proportion 
of raw MSE

Median, 
ground Bias, raw Bias, 

corrected
109,386 337 0.102 0.061 0.354 0.078 +0.054 +0.001

ML cleanup decreases 1km 
MAIAC AOD error by 65% in k-
fold site-level cross validation 
across CONUS (2000-2022)



Maps of typical MAIAC and Corrected AOD. Day selected as having the median improvement 
in MSE at AERONET sites (2005-01-14). The map is centered on Arkansas. 

What does this cleanup look like?



What does this cleanup look like?

Maps of MAIAC and Corrected AOD over the Mid-Atlantic US during a documented 
exceedance event with downmixing of long-range transported smoke from Canadian 
wildfires (June 10, 2015). 



Does cleanup improve agreement 
with AQS PM2.5?

• We examined 1,642,701 observations of AQS PM2.5 on 
1,436,978 cell-days with AOD. The correlation of the 
observations with the original satellite values was 0.440, 
compared to 0.495 with our corrected values.

• In a year-level comparison, we took cell-years with at least 
100 days of AQS observations and 10 days per month of satellite 
observations for at least 12 months. Obtaining 911 cell-years, we 
compared official AQS annual means to the yearly means of 
satellite observations, computed with daily means weighted 
according to how many days of the year to which each day was 
closest. The result was a correlation with the original satellite 
values of 0.329, compared to 0.549 with our corrected values.
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Discussion!

https://www.flickr.com/photos/nasakennedy/51944138873/

NOAA’s GOES-T 
2022-03-01 launch

Allan Just PhD
allan_just@brown.edu



Informing public health & policy

Improved epidemiological models can:
– Be combined with climate projections to estimate 

long-term impacts of climate change

– Be incorporated in health impact analyses to 
compare policy scenarios 

– Inform current medical and health-based decision-
making (e.g., ProAire – Mexico’s air quality planning)



Satellites are a key tool for monitoring the 
consequences of climate change

PM2.5, temperature, humidity

Ozone, NO2, SO2

Vegetation/Greenness

Wildfires and flaring

New sensors, new opportunities!



Newer satellites – better products

Higher-resolution satellite products reveal patterns

TROPOMI retrieval over Mexico City
(launched 2017)

OMI retrieval over Mexico City
(launched 2004)



2023-05-23
AerosolWatch (NOAA/NESDIS)



2023-05-23
AerosolWatch (NOAA/NESDIS)


