Ammonia and Atmospheric Chemistry

Spyros Pandis

Departments of Chemical Engineering and Engineering & Public Policy

Carnegie Mellon University

MAIN AIR QUALITY PROBLEMS

NH₃ ???

Ozone Particulate Matter (PM_{2.5} and PM₁₀) Visibility Reduction Acid Deposition (acid rain) Air Toxics

Ozone Hole Greenhouse effect (global change)

Ammonia and Gas-Phase Chemistry

- Most species in the atmosphere react with the hydroxyl radical (OH)
 - These reactions remove the primary species, but initiate a complicated chain of radical reactions leading to the formation of ozone and other secondary pollutants
- The reaction of ammonia with OH is quite slow (2 months average lifetime)
 - Negligible importance for the atmospheric fate of ammonia
- Ammonia does not contribute directly to the atmospheric photochemistry
 - No role in the formation of ozone or other secondary gasphase pollutants

Fine PM Composition in NE US (Pittsburgh, 2001)

PM_{2.5}=20.1 μg m⁻³

Sulfuric Acid in the Atmosphere

- Sulfuric acid in the presence of water vapor has an extremely low vapor pressure
- As soon as sulfuric acid vapor is formed in the atmosphere it is transferred to the particulate phase
 - Condensation on existing particles, or in-situ formation of new particles (nucleation)
- The preferred form of sulfuric acid in the aerosol phase is ammonium bisulfate (NH₄)₂SO₄
 - Each sulfuric acid molecule is looking for two ammonia molecules (neutralization)
 - If there is not enough ammonia present, sulfuric acid exists either as H₂SO₄(aq) or NH₄HSO₄

Ammonium Nitrate Formation

 $\frac{\text{NH}_3(g) + \text{HNO}_3(g) \leftrightarrows \text{NH}_4\text{NO}_3(s)}{\text{NH}_3(g) + \text{HNO}_3(g) \leftrightarrows \text{NH}_4^+(aq) + \text{NO}_3^-(aq) \text{ (high RH)}}$

The formation of ammonium nitrate requires

- Nitric acid (major sources of NOx in the US are transportation and power plants)
- Free ammonia (ammonia not taken up by sulfate)
- The formation reaction is favored at:
 - Low temperatures (night, winter, fall, spring)
 - High relative humidity

Linear and Nonlinear Behavior of Inorganic PM

A Multidisciplinary Research Consortium for Atmospheric Aerosol Research Funded by EPA and DOE/NETL

Aerosol Nitrate, Ammonia and Inorganic PM_{2.5} Control

- Motivation: What is the response of fine PM_{2.5} when the emissions of SO₂ are reduced? What about changes in NOx or NH₃ emissions?
- Hypothesis: A significant fraction of the sulfate reduced will be replaced by nitrate when SO₂ emissions are reduced.
- Approach: High resolution measurements of aerosol sulfate, nitrate, and total (gas+aerosol) nitrate and ammonium. Use of numerical models.

On-line (detector) vs. off-line (IC)

 NH_3 gas + $PM_{2.5}$ NH_4^+ , $\mu g/m^3$

Partitioning of PM_{2.5} Nitrate (Pittsburgh, 2001)

GFEMN Evaluation: Nitrate Partitioning (July 19, 2001)

Evaluation of ISORROPIA and GFEMN

Concentration. µg m ⁻³

Availability of Nitric Acid/Nitrate (Pittsburgh 2001-02)

Where does the HNO₃ go?

July 19

• The HNO₃ declines rapidly every afternoon with an average rate of around 30% per hour.

Dry removal can explain rates of 10-30% per hour.

 Net contribution of horizontal transport should be small because of the relatively spatial homogeneity in the area.

• During the night the dry deposition becomes very slow because the HNO₃ goes to the aerosol phase

Some potential implications

- During the summer there is 1-2 μg m⁻³ of HNO₃(g) on average (and as much as 10 μg m⁻³) that could be transferred to the aerosol phase.
- The lifetime of nitric acid vapor is only a few hours
 - Reaction with ammonia will increase its lifetime
- Decreasing sulfate or increasing ammonia will transfer nitric acid to the particulate phase, increase its lifetime, and its concentration levels.
- During the fall and winter months in Pittsburgh most of the available nitric acid appears to be already in the aerosol phase.

Modeling of the H₂SO₄/HNO₃/NH₃/H₂O System

- Processes: Partitioning (with GFEMN), removal (dry deposition velocities), emission/production
- Framework: Box model (Pandis and Seinfeld, 1991).
- Gas-phase production fitted to the observations (reasonable rates).
- July 2001 and January 2002 periods. Use of average diurnal concentrations.
- Inputs: Sulfate concentrations, meteorology.

Evaluation of Box Model

Effect of 20% Reduction of the Sulfate Concentration on Nitrate Levels (Pittsburgh, July 2001)

Effect of Sulfate Concentration Changes on Inorganic PM_{2.5}

Effect of 50% Emissions Change on 24-hr Average PM_{2.5} mass

Ammonia and Global Change

- Increases in ammonia concentrations will result in increases of the fine aerosol mass
 - Visibility reduction
 - Cooling of the planet
- The role of ammonia is expected to become more important in the coming years as SO₂ emissions decrease

The lifetime of ammonia in the troposphere is only a few days so it does not have enough time to make it to the stratosphere

no effect on stratospheric ozone

Conclusions

- Continuous measurements of the major inorganic ions and the corresponding gas-phase species allow us
 - to evaluate our understanding of the system
 - provide insights about important processes
- Existing models (GFEMN) reproduce well the partitioning of nitric acid in Western Pennsylvania both during the summer and the winter
- Sulfate reductions result in nitrate level increases (change of partitioning, lifetime increase).

Conclusions (continued)

- Ammonia, is controlling the ammonium nitrate formation both during the summer and the winter.
- PM_{2.5} control efficiencies (for Pittsburgh)
 - July: Sulfate > Ammonia > Nitric Acid
 - January: Ammonia >= Sulfate >= Nitric Acid
- Ammonia is not involved in the ozone formation in the troposphere and its destruction in the stratosphere
- Increases in ammonia levels result in cooling of the planet, decreases of the acidity of particles and clouds, but increases of the fine particulate matter concentrations and reductions of visibility