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Most species in the atmosphere react with the
hydroxyl radical (OH)

These reactions remove the primary species, but initiate a
complicated chain of radical reactions leading to the formation
of ozone and other secondary pollutants
The reaction of ammonia with OH is quite slow (2
months average lifetime)

Negligible importance for the atmospheric fate of ammonia

Ammonia does not contribute directly to the
atmospheric photochemistry

No role in the formation of ozone or other secondary gas-
phase pollutants
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Sulfuric acid in the presence of water vapor
has an extremely low vapor pressure

As soon as sulfuric acid vapor is formed In
the atmosphere it is transferred to the
particulate phase
Condensation on existing particles, or in-situ formation
of new particles (nucleation)
The preferred form of sulfuric acid in the
aerosol phase is ammonium bisulfate
(NH,),SO,

Each sulfuric acid molecule is looking for two ammonia
molecules (neutralization)

If there is not enough ammonia present, sulfuric acid
exists either as H,SO,(aq) or NH,HSO,
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NH; (g) + HNO; (g) 5 NH,NO; (s) (low RH)
NH; (g) + HNO; (g) S NH,* (aq) + NO; (aq) (high RH)

The formation of ammonium nitrate requires

Nitric acid (major sources of NOx in the US are transportation
and power plants)

Free ammonia (ammonia not taken up by sulfate)

The formation reaction is favored at:
Low temperatures (night, winter, fall, spring)
High relative humidity
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Motivation: What Is the response of fine PM,.
when the emissions of SO, are reduced? What
about changes in NOx or NH; emissions?

Hypothesis: A significant fraction of the sulfate
reduced will be replaced by nitrate when SO,
emissions are reduced.

Approach: High resolution measurements of
aerosol sulfate, nitrate, and total (gas+aerosol)
nitrate and ammonium. Use of numerical models.
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Concentration (ug m-3)
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The HNO, declines rapidly
every afternoon with an average
rate of around 30% per hour.

Dry removal can explain rates of
10-30% per hour.

Net contribution of horizontal
transport should be small because of the
relatively spatial homogeneity in the
area.

During the night the dry deposition
becomes very slow because the HNO,
goes to the aerosol phase



During the summer there is 1-2 ug m-=3of HNO(g)
on average (and as much as 10 ug m-3) that could
be transferred to the aerosol phase.

The lifetime of nitric acid vapor is only a few
hours
Reaction with ammonia will increase its lifetime

Decreasing sulfate or increasing ammonia will
transfer nitric acid to the particulate phase,
Increase its lifetime, and its concentration levels.

During the fall and winter months in Pittsburgh
most of the available nitric acid appears to be
already in the aerosol phase.



Processes: Partitioning (with GFEMN), removal (dry
deposition velocities), emission/production

Framework: Box model (pandis and Seinfeld, 1991).

Gas-phase production fitted to the observations
(reasonable rates).

July 2001 and January 2002 periods. Use of
average diurnal concentrations.

Inputs: Sulfate concentrations, meteorology.
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(Pittsburgh, July 2001)
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Inorganic PM, ¢ (ung m-3)
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Inorganic PM, . Reduction (%o)
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Inorganic PM, . Reduction (%o)
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(Pittsburgh, January 2002)
1 I 1 I 1 I 1 I 1

N Ul
S S
|

W
S
I

N
O
|

=
)
I

Inorganic PM, . Reduction (%o)

o

-50% Sulfate a

Same Sulfate

10 20 0] 40 50
Ammonia Reduction (%)



Percent reduction in mean
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Increases In ammonia concentrations will
result in iIncreases of the fine aerosol mass
Visibility reduction
Cooling of the planet
The role of ammonia is expected to become

more important in the coming years as SO,
emissions decrease

The lifetime of ammonia in the troposphere is
only a few days so it does not have enough
time to make it to the stratosphere

no effect on stratospheric ozone



Continuous measurements of the major inorganic
lons and the corresponding gas-phase species
allow us

to evaluate our understanding of the system

provide insights about important processes

Existing models (GFEMN) reproduce well the
partitioning of nitric acid in Western Pennsylvania
both during the summer and the winter

Sulfate reductions result in nitrate level increases
(change of partitioning, lifetime increase).



Ammonia, Is controlling the ammonium nitrate
formation both during the summer and the winter.

PM, - control efficiencies (for Pittsburgh)
July: Sulfate > Ammonia > Nitric Acid
January: Ammonia >= Sulfate >= Nitric Acid

Ammoniais not involved in the ozone formation in
the troposphere and its destruction in the
stratosphere

Increases in ammonia levels result in cooling of the
planet, decreases of the acidity of particles and
clouds, but increases of the fine particulate matter
concentrations and reductions of visibility
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