

Air Sensors & Advanced Monitoring Technologies

NACAA Communicating Air Quality Conference March 16, 2016

Mohsen Nazemi, P.E. Deputy Executive Officer South Coast Air Quality Management District

Low-Cost Air Quality Sensors

- Rapidly proliferating
- Tremendous potential
 - Low cost
 - Ease of use
- Multiple potential applications
 - Spatial/Temporal air quality info
 - Fence-line applications
 - Regulatory/Academic/Citizen's science
- > How reliable/accurate are they????
- Critical need to systematically evaluate their performance

AQ-SPEC - Background

- Established in July 2014 • Over \$600,000 investment
- Main Goals & Objectives

 Provide guidance & clarity for ever
 - evolving sensor technology & data interpretation
 - Catalyze successful evolution/use of sensor technology
 - Minimize confusion
- Sensor Selection Criteria
 - Commercially available
 - Optical
 - Electrochemical
 - Metal oxide
 - Real- or near-real time
 - Criteria pollutants & air toxics

Dylos (prototype)

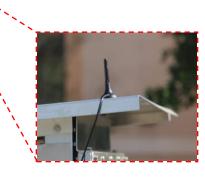
CairClip


Shinyei

SmartCitizens

AQ-SPEC - Overview

(Categorize sensors based on performance)



AQ-SPEC Field Testing

• Started on 09/12/2014

- Sensor tested in triplicates
- Two month deployment
- Locations:
 - \circ Rubidoux station
 - Inland site
 - Fully instrumented
 - $_{\odot}$ I-710 station
 - Near-roadway site
 - Fully instrumented

AQ-SPEC Field Testing

Sensors	Pollutant Measured	Approximate Cost
AeroQual Ozone S500	03	\$600
RTI MicroPEM	PM2.5 (real-time & integrated)	\$2,000
Shinyei PM Sensor	PM 2.5	\$1,000
MetOne Community Monitor	PM	\$1,900
MetOne E-Sampler	PM	NA
Speck (CMU) Airviz, Inc	PM2.5	\$200
Air Quality Egg	PM, CO, NO2	\$300
Alphasense B4 NO2 (Alphasense ISB)	NO2	\$90
Alphasense B4 NO2 with E-chem 328 board	NO2	\$90
Alphasense B4 Ozone (Alphasense ISB)	Ozone	\$90
Alphasense B4 Ozone with E-chem 328 board	Ozone	\$90
Landtec AQ Mesh (V1)	NO, NO2 and O3, CO, and SO2	10,000
Landtec AQ Mesh (V2)	NO, NO2 and O3, CO, and SO2	10,000
Alphasense OPC	PM fractions	\$450
Dylos DC1100/DC1700	Particle count	\$300
Smart Citizen	NO, NO2, CO, RH, T	\$175
AirBeam PM monitor	PM2.5	\$200
SDL307 mini laser	PM10, PM2.5	\$150
Sensaris Eco PM	PM2.5, VOC, T, RH	NA
Unitec Sense-it	CO, NO2, O3	2,000 Euros
Yoctopuce VOC	VOC	\$230
Cube	T, RH, CO2, VOC	\$125
Alphasense B4	O3, CO, CO2, H2S, SO2, NO, NO2, VOC	\$90/each (~\$450 for VOC)
China Way PM2.5 PC	PM2.5	\$700
2B OEM	03	5,000
Grove Dust Sensor	PM (PM2.5?)	\$16
Sensorcon	co	\$160
Sharp PM2.5 Sensor	PM2.5	\$20
ELM (Fomerly CarairIT)	Multi-gas and PM?	NA
Libelium	Multi-gas and PM	\$3,000
Spec Sensors w/ Intel Edison	Multi gas	\$1,350 6

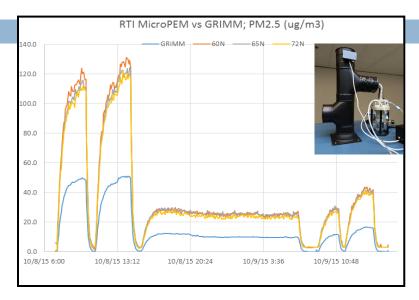
AQ-SPEC Lab Testing

<u>T and RH controlled</u>: T (0-50 °C); RH (5-95%)

Particle testing


- Particle generation system
- Particle monitors: mass concentration and size distribution

Gas testing


- Gas generation / dilution system
- Gas monitors: CO, NOX, O3, SO2, H2S, CH4/NMHC

AQ-SPEC Lab Testing (continued)

T and RH controlled: T (0-50 °C); RH (5-95%)

Test for:

- Linearity of response (range)
- Accuracy & precision
- Lower detectable limit
- Concentration resolution
- Response time
- Interference equivalents
- RH and T influences
- Other

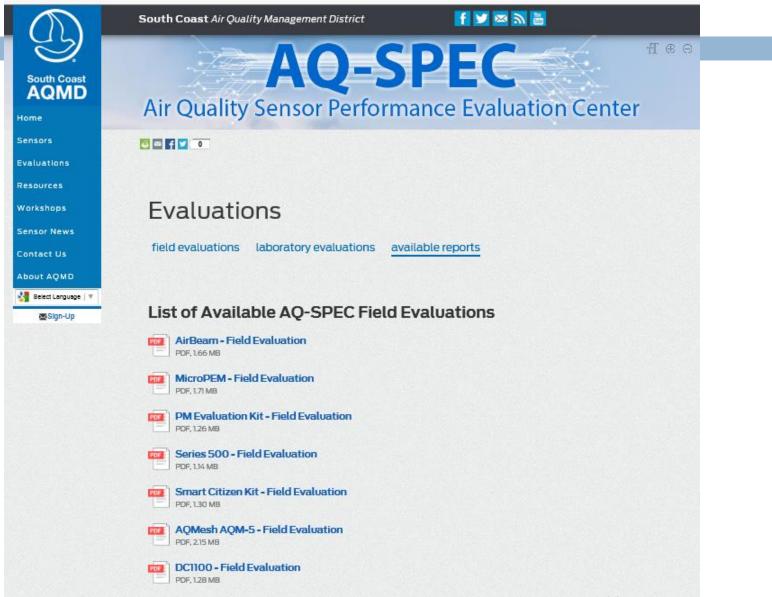
www.aqmd.gov/aq-spec

Background

In an effort to inform the general public about the actual performance of commercially available "low-cost" air quality sensors, the SCAQMD has established the Air Quality Sensor Performance Evaluation Center (AQ-SPEC) program. The AQ-SPEC program aims at performing a thorough characterization of currently available "low-cost" sensors under ambient (field) and controlled (laboratory) conditions.

Main Goals & Objectives

- Evaluate the performance of commercially available "low-cost" air quality sensors in both field and laboratory settings
- · Provide guidance and clarity for ever-evolving sensor technology and data interpretation
- · Catalyze the successful evolution, development, and use of sensor technology

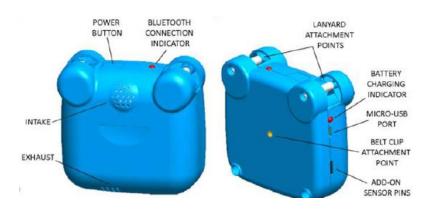

Sensor Selection Criteria

- The sensor shall have potential for near-term use.
- · The sensor shall provide real- or near-real time measurements.
- The sensor shall measure one or more of the National Ambient Air Quality Standards (NAAQS) criteria pollutants, air toxics, pollutants of concern and non- air toxics. Examples of the targeted gases and particles are carbon monoxide (CO), ozone
 (O₃), nitrogen oxides (NO₈), particulate matter (PM), volatile organic compounds (VOCs), hydrogen sulfide (H₂S) and methane (CH₄).

South Coast AQMD

www.aqmd.gov/aq-spec

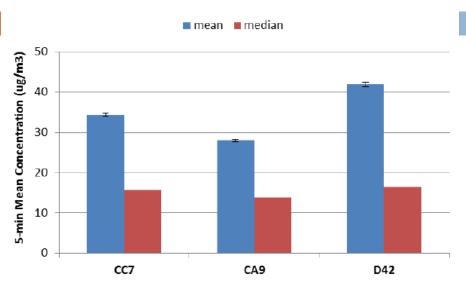
FIELD TESTING RESULTS (Examples)



AirBeam PM Sensor

• AirBeam Sensor (3 units tested):

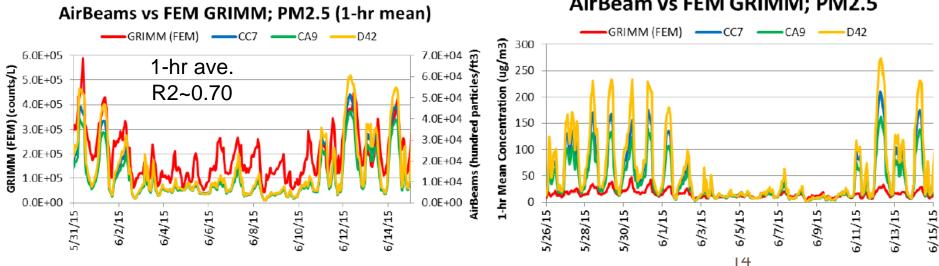
- > Optical particle counter (non-FEM)
- PM2.5 count (hundred particles/ft3) and PM2.5 mass (ug/m3)
- ≻Time resolution: 1-min


≻Unit cost: ~\$200

- <u>MetOne BAM (reference</u> <u>method)</u>:
 - ➢ Beta-attenuation monitor (FEM)
 - ➤Measures PM2.5
 - ≻Cost: ~\$20,000
 - ➤Time resolution: 1-hr
- <u>GRIMM (reference method)</u>:
 - Optical particle counter (FEM)
 Uses proprietary algorithms to calculate total PM, PM2.5, and PM1 from particle number measurements
 Cost: ~\$25,000 and up
 - ≻Time resolution: 1-min

South Coast

AirBeam PM Sensor (continued)



• Preliminary results:

- ≻ High intra-model variability
- ≻Particle count conc.
 - Good correlation with FEM

\triangleright Particle mass conc.

- Calibration issues
- AirBeam v2 recalibrated using field testing data

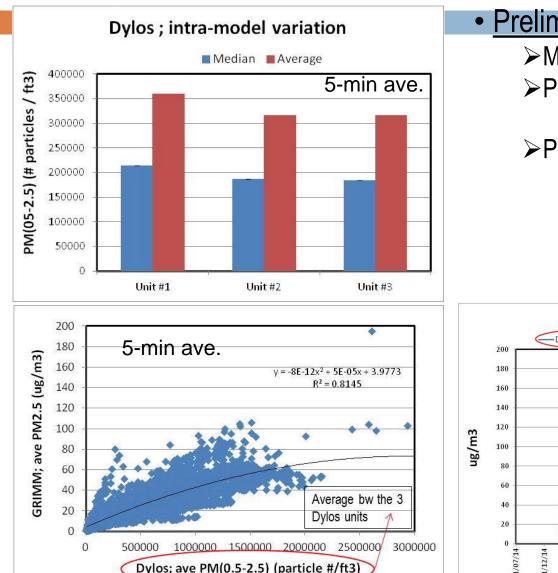
AirBeam vs FEM GRIMM; PM2.5

Dylos DC1100/DC1700

Dylos (3 units tested):

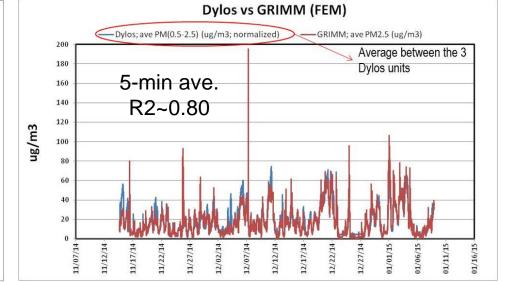
- ➢Optical particle counter (non-FEM)
- Three different size fractions including PM(0.5-2.5) (used as an estimate of PM2.5)
- ➤Time resolution: 1-min

≻Cost: ~\$300



- <u>MetOne BAM (reference</u> <u>method)</u>:
 - ➢Beta-attenuation monitor (FEM)
 - ➤Measures PM2.5
 - ≻Cost: ~\$20,000
 - ➤Time resolution: 1-hr
- <u>GRIMM (reference method)</u>:
 - Optical particle counter (FEM)
 Uses proprietary algorithms to calculate total PM, PM2.5, and PM1 from particle number measurements
 Cost: ~\$25,000 and up
 - ≻Time resolution: 1-min

Dylos DC1100/DC1700 (continued)



Preliminary results:

- ≻Modest intra-model variability
- ≻Particle count conc.
 - Good correlation with FEM

≻Particle mass conc.

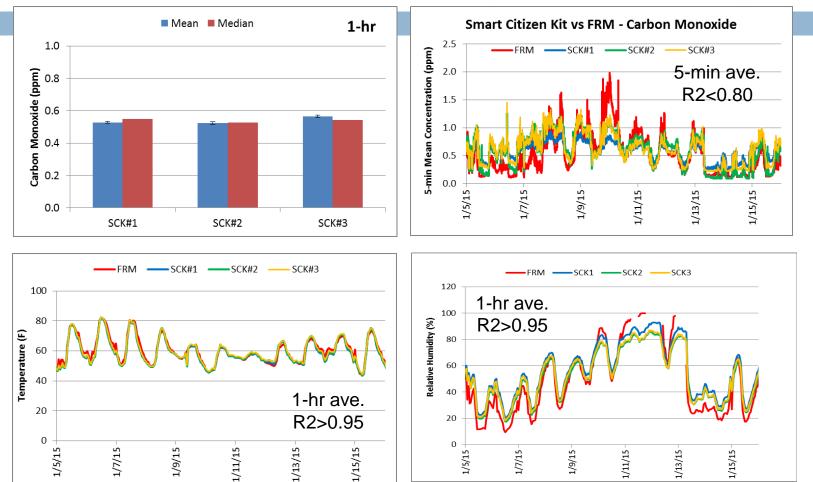
Can be derived via FEM calibration

SmartCitizen Kit

- <u>Smart Citizen Kit (3 units tested</u>):
 ≻Metal-oxide sensor (non-FEM)
 - CO (kOhm), NO2 (kOhm),
 Temperature (C) and Relative Humidity (%)
 Time resolution: 1-min
 Unit cost: ~\$200

• SCAQMD FRM instruments:

CO instrument; cost: ~\$10,000
 Time resolution: 1-min
 NOx instrument; cost: ~\$11,000
 Time resolution: 1-min
 Meteorological station (wind speed, wind direction temperature, relative humidity, and pressure); cost: ~\$5,000
 Time resolution: 1-min



SmartCitizen Kit (continued)

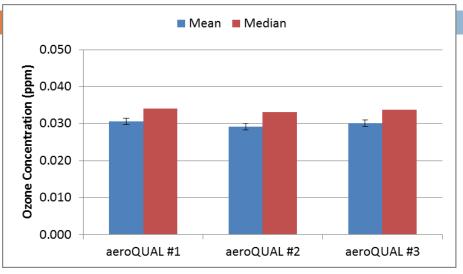
- Preliminary results:
 - Low intra-model variability
 - ➤CO: good correlation with FRM

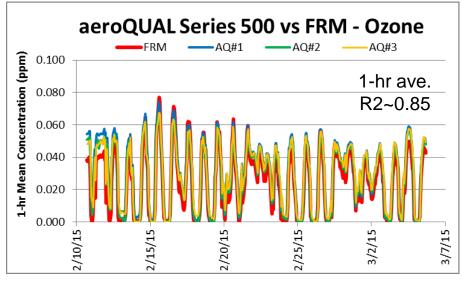
NO2: no correlation with FRMReliable T and RH data

AeroQUAL S-500

AeroQUAL S-500 (3 units tested):

- Metal-oxide sensor (non-FRM)
 - Ozone (pphm)
- ➤Temperature (C) and Relative Humidity (%)
- ≻Time resolution: 1-min
- ≻Unit cost: ~\$500


<u>SCAQMD FRM instruments</u>:


- ➢Ozone instrument; cost: ~\$7,000
 - Time resolution: 1-min
- Meteorological station (wind speed, wind direction temperature, relative humidity, and pressure); cost: ~\$5,000
 - Time resolution: 1-min

AeroQUAL S-500 (continued)

Preliminary results:

- ≻Low intra-model variability
- ≻Ozone conc.
 - Good correlation with FEM
- Slight signal degradation over time (sensor replacement available)

Field Testing - Discussion

PM (optical) sensors:

- Minimal down time
- Low intra-model variability
- Strong correlation (R²) with two different FEM instruments
- Sensor "calibration" may be needed
- Potential sources of error:
 - Sensors cannot detect very small particles (e.g. <0.5 µm for Dylos)
 - > Bias in algorithms used to convert particle counts to particle mass

Gaseous sensors:

- Minimal down time
- Low intra-model variability
- CO; NO; O3 (when measured alone): good correlation with FRMs
- O3 and/or NO2: low correlation with FRM (potential O3 NO2 interference)
- SO2: difficult to measure with current electrochemical sensors
- Chamber testing is necessary to fully evaluate the performance of these sensors
- <u>All results are still preliminary</u>

Field Testing - Summary

	Manufacturer (Model)	Туре	Pollutant(s)	Cost	Time Resolution	Sensor vs FEM/FRM Method*
	HabitatMap (AirBeam)	Optical	PM2.5	~\$200	1 min	R ² ~0.70
	Dylos (DC1100)	Optical	PM(0.5-2.5)	~\$300	1 min	R ² ~0.85
04	Alphasense (OPC-N2)	Optical	PM1 PM2.5 PM10	~\$400	15 sec	R ² ~0.85 R ² ~0.90 R ² ~0.80
	Shinyei (PM Evaluation Kit)	Optical	PM2.5	~\$1,000	1 min	R ² ~0.85
	MetOne (Neighborhood Sensor)	Optical	PM2.5	~\$1,900	15 sec	R ² ~0.70
	RTI (MicroPEM)	Optical	PM2.5	~\$2,000	10 sec	R ² ~0.80

*Comparisons refer to 1-hr average data; results are still preliminary; laboratory evaluations needed to confirm field results

Field Testing – Summary (cont.)

Manufacturer (Model)	Туре	Pollutant(s)	Cost	Time Resolution	Sensor vs FEM/FRM Method [*]
Smart Citizen Kit	Metal oxide	CO, NO_2	~\$200	1 min	R2(CO)~0.85 R2(NO2): unreliable
Aeroqual (S-500)	Metal oxide	O ₃	~\$500	1 min	R ² ∼0.85
Landtec (AQMesh AQM-5)	Electrochem.	CO, NO, NO2, SO2, and O3	~\$10,00 0	1-15 min	R2(CO)~0.85 R2(NO)~0.85 R2(NO2)<0.50 R2(O3)<0.50 R2(SO2): unreliable

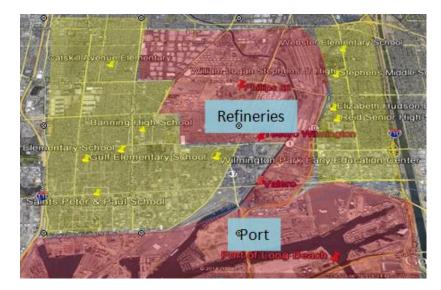
*Comparisons refer to 1-hr average data; results are still preliminary; laboratory evaluations needed to confirm field results

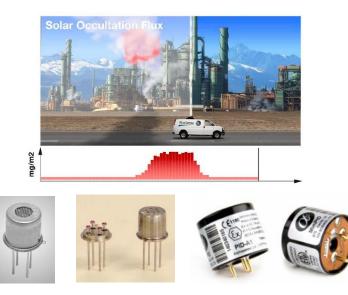
Upcoming SCAQMD Activities

Pilot Study #1:

- Create a small sensor network
 - > 20-25 sensors deployed @
 - ✓ Existing monitoring stations
 - ✓ Near road sites
 - $\checkmark~$ Public and private locations
 - ➤ Target PM, O3, NO2, CO
 - Test sensor durability
 - Show ability to scale up in future
- Test connectivity options
 - > Cellular
 - LoRa WAN
 - Digi mesh
- Explore various data ingestion, storage, and analytics solutions

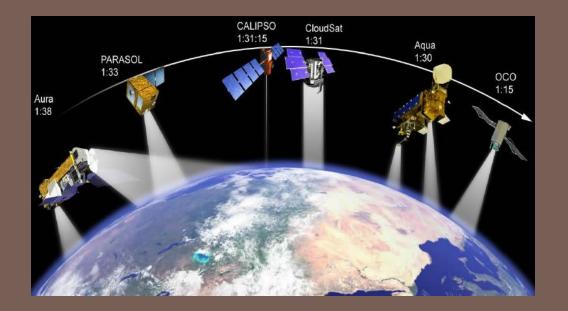
Upcoming SCAQMD Activities


Pilot Study #2:


- Explore fence-line applications (use as a screening tool)
- Monitor PM emissions from a waste disposal facility
 - > 15-20 sensors deployed
 - \checkmark Around the facility
 - \checkmark Inside the facility
 - ✓ Downwind of facility
 - ➤ Test sensor durability
- Use wireless mesh network
- Explore various data ingestion, storage, and analytics solutions
- Provide real-time feedback and alerts

Upcoming SCAQMD Activities

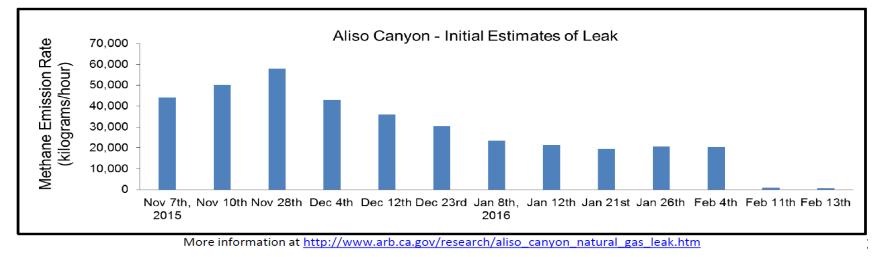
- US EPA "Community-scale Air Toxics Ambient Monitoring" grant: "Application Of Next Generation Air Monitoring Methods To Characterize Hazardous Air Pollutant Emissions From Refineries and Assess Potential Impacts To Surrounding Communities"
- June 1, 2015 May 31, 2018
- Use Optical Remote Sensing (ORS) methods to monitor Hazardous Air Pollutant (HAP) emissions from refineries and to estimate their annual VOC emissions
- Use of ORS methods and "low-cost" sensors to assess the impact of industrial HAP emissions on surrounding communities



Expected Results and Next Steps

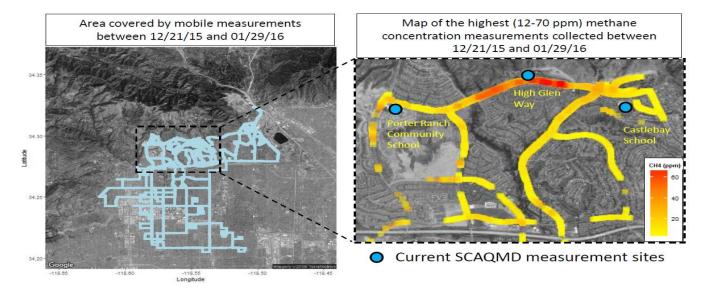
- Provide the knowledge necessary to appropriately select, use, and maintain sensors and correctly interpret their data
- Promote a better and more responsible use of sensors
- Discover new and more effective ways to interact with local communities
- Provide manufacturers with valuable feedback for improving current and next generation sensor technology
- Create a "sensor library" to make "low-cost" sensors available to communities, schools, and individuals across California

27



UPCOMING NEW TECHNOLOGIES

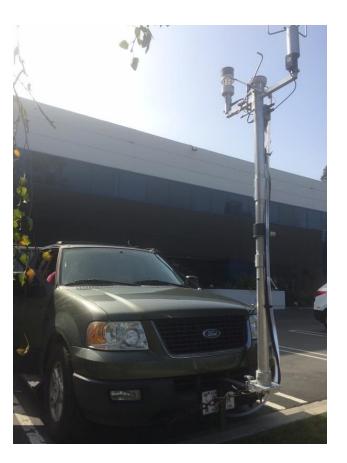
Scientific Aviation Mooney TLS Aircraft / Measuring CH4


29

SCAQMD's Mobile Methane Measurement Platform

30

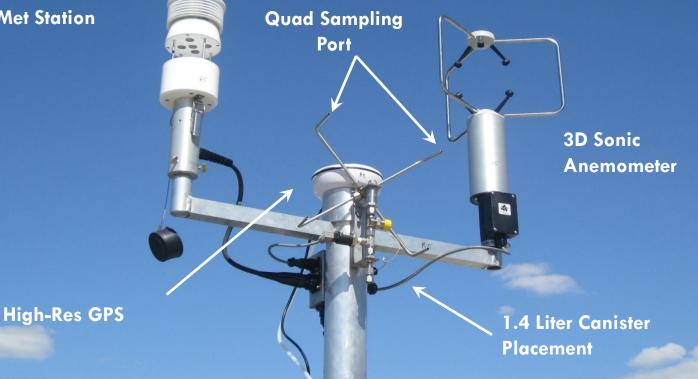
Geospatial Measurement of Air Pollution (GMAP)



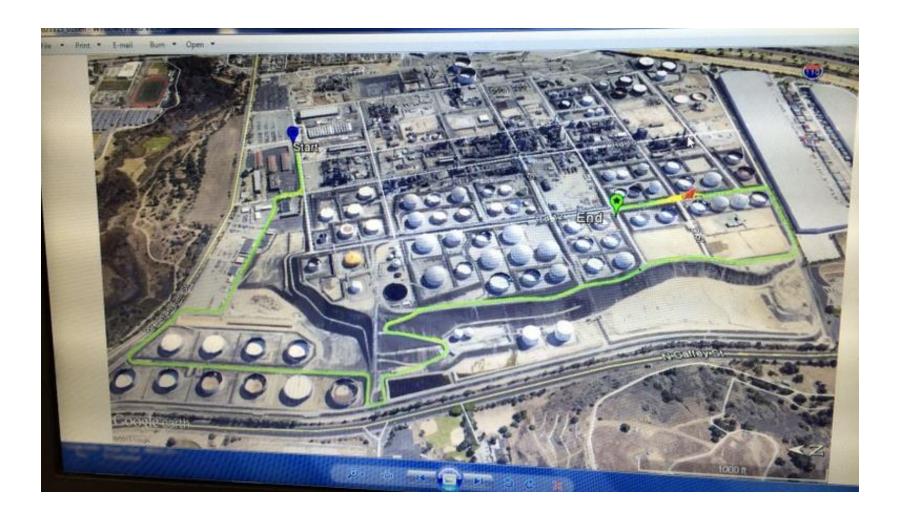
U.S. EPA National Enforcement Investigation Center (NEIC)

GMAP Vehicle

- Utilizes a vehicle equipped with measurement technology to:
 - Identify sources of air pollution from a distance
 - Quantify the observed emissions (modeled rates)
 - Map/visualize the results



GMAP REQ Measurement Equipment

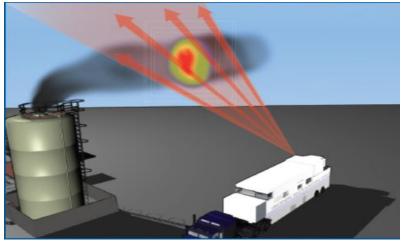

In the truck: High-precision CH₄ and BTEX instruments, batteries, control system, IR camera, rangefinder

Auto-North **Met Station**



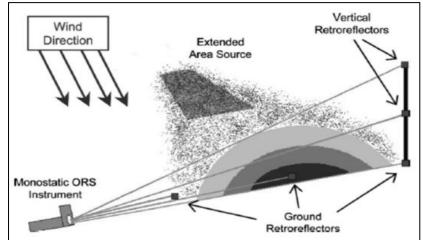
GMAP – Benzene at a Tank Farm

GMAP – Methane at an LNG Fueling Station



Upcoming New Technologies: Optical Remote Sensing

Upcoming SCAQMD projects using optical remote sensing (ORS) methods to characterize/quantify fugitive and stack emissions from large refineries, small point sources, and marine vessels(\$1.1 million)


Differential Absorption Lidar

Solar Occultation Flux

Fourier transform infrared spectroscopy

Upcoming New Technologies: Optical Remote Sensing

- Three Projects in 2015 –
- Four Vendors:
- FluxSense (SOF+FTIR+DOAS)
- National Physical Laboratories (DIAL)
- □ Atmosfir Optics, Ltd. (Open-Path FTIR)
- □ Kassay Field Services (Open-Path FTIR)

Ongoing Projects - 2015

Project 1 - Quantify fugitive emissions from large refineries

- Main measurements: FluxSense
 - SOF+FTIR+DOAS / mobile measurements (daytime only)
 - > 5 week study at 5 refineries (6 sites)
 - Facility-wide emissions of methane, nonmethane VOCs, NOx, SO2
 - Accurate meteorological (LIDAR) data to reduce uncertainty
- Validation measurements: NPL
 - > DIAL / stationary measurements
 - > (daytime and nighttime)
 - ➤ 1 week study at 1 refinery
 - Facility-wide emissions of methane, nonmethane VOCs, NOx, SO2
 - Not suited for long-term measurements but ideal for field validation

- Validation measurements: Atmosfir
 - Open-path FTIR / stationary measurements (daytime and nighttime)
 - ➣ 5 week study at 1 refinery
 - Prolonged measurements of methane, non-methane VOCs, NOx, SO2
 - > Higher detection limits but thoroughly validated method (EPA OTM-10)

Ongoing Projects – 2015 (continued)

Project 2 - Quantify gaseous emissions from small point sources

- Main measurements: FluxSense
 - SOF+FTIR+DOAS / mobile measurements (daytime only)
 - > 5 week study at 50 to 100 oil wells, 20 to 40 gas stations, and other point sources
 - Methane and non-methane VOCs
 - Accurate meteorological (LIDAR) data to reduce uncertainty
- Validation measurements: NPL
 - DIAL / stationary measurements (daytime and nighttime)
 - > 1 week study at 7 point sources
 - Methane and non-methane VOCs
 - Ideal for field validation

- Validation measurements: Kassay
 - Open-path FTIR / stationary measurements (daytime and nighttime)
 - > 5 week study at 50 point sources
 - Methane and non-methane VOCs
 - > Higher detection limits but proven method (EPA TO-16)

Ongoing Projects – 2015 (continued)

Project 3 - Quantify stack emissions from marine vessels

- Main Measurements: FluxSense
 - > Optical + "traditional" methods / on-shore and off-shore (ship) measurements
 - ≻ 4 week study @ POLA or POLB
 - "Real world" emissions (g/s) of SO2 and NO2 and "actual" emission factors (g/Kg fuel burnt) of SO2, NOx and particulates from individual ships

Schedule for Projects 1-3

- > Completion of measurement campaign: end of October 2015
- ➢ Final Reports: 1st Quarter 2016