ROLE OF AMMONIA/AMMONIUM IN VISIBILITY ASSESSMENTS

Nitrate, nitrate, where is the nitrate?
ACKNOWLEDGMENTS

- Dr. Jeffrey Collett, Colorado State University
- IMPROVE and VIEWS Websites
VISIBILITY FOCUS

- Only consider visibility impairment associated with SO_2 and NO_x emissions.
- Only consider that portion of those emissions that convert to sulfuric acid (p) and nitric acid (g).
- Discuss role of ammonia in neutralizing those acids.
- Discuss the resulting effect on visibility.
Causes of Visibility Impairment

In General

- Scattering and absorption of light by particles
- Scattering and absorption of light by gases

This discussion

- Emphasis on scattering of light by particles
IMPROVE Sampling

- 160+ sites in 2003
- Particle sampling
 - 24-hour samples every third day
- \(\text{PM}_{2.5} \) mass
 - Elemental analysis
 - Ions
 - Carbonaceous material
- \(\text{PM}_{10} \) Mass
IMPROVE Reporting

- Fine mass
 - Ammonium sulfate
 - Ammonium nitrate
 - Organic carbon
 - Elemental Carbon
 - Fine soil
- Undifferentiated Coarse mass
- “Reconstruct” Extinction
Mean Extinction Budgets on Haziest Days
1996-2001

Extinction (Mm⁻¹)

- Ammonium Sulfate
- Ammonium Nitrate
- Organics
- Soot
- Soil
- Coarse Mass

19 81 143 206
Mean Extinction Budgets on Clearest Days
1996-2001

<table>
<thead>
<tr>
<th>Extinction (Mm⁻¹)</th>
<th>Ammonium Sulfate</th>
<th>Ammonium Nitrate</th>
<th>Organics</th>
<th>Soot</th>
<th>Soil</th>
<th>Coarse Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>33</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
So what can we notice?

- Particle extinction much greater in the eastern U.S.
- Sulfate (as ammonium sulfate) typically dominates the extinction in the east and is a major constituent elsewhere.
- Nitrate (as ammonium nitrate) is a major contributor in central and southern California, the northernmost tier of States.
- We need to fill in the gaps, but indications are the central U.S. may also experience high nitrate contributions.
Why do we care about ammonia?

- Free ammonia will tend to preferentially neutralize the sulfuric acid.
- The degree of neutralization may not be too important since ammonium sulfate, ammonium bisulfate, and letovacite all have similar hygroscopic properties.
- However, sulfuric acid has a greater effect on visibility because of its enhanced hygroscopic properties.
- In some locations, particulate nitrate may replace “controlled” sulfate since “freed” ammonia may become available when the temperature régime is favorable.
Confounding Issues

- Aerosol chemistry uncertainties
 - Assumption of fully neutralized sulfate is not correct for all sample days
 - Assumption of ammonium nitrate may not always be correct
 - IMPROVE configuration may not be suitable to determine ammonium concentrations
Nitrate Issues

- Nitrate may be present in both the fine and coarse modes
 - Usually ammonium nitrate in fine mode
 - In some locations, fine fraction may actually be tail of coarse fraction
 - Sodium nitrate in coarse mode
Nitrate Summary

- Eastern U.S.
 - Model studies show potential for aerosol mass increase as nitrate replaces sulfate in response to declining sulfate concentrations

- Western U.S.
 - Little known about potential for nitrate replacement of sulfate
 - Large uncertainties in current aerosol composition