Cost and Performance of Mercury Control for Coal-Fired Boilers

STAPPA/ALAPCO Workshop

October 27, 2004
Coeur d’Alene, ID

Michael D. Durham, Ph.D., MBA
ADA-ES, Inc.
8100 SouthPark Way, Unit B
Littleton, CO 80120
(303) 734-1727
miked@adaes.com
Outline

• Sorbent Injection for Controlling Hg Emissions
• Status of Technology
• Costs for Mercury Control
• Regulatory Parameters from a Control Device Perspective
• Conclusions
Coal-Fired Boiler with Sorbent Injection

Sorbent Injection

90% have ESPs
10% have FFs

Ash and Sorbent

Hg CEM
Sorbent Injection System
Activated Carbon Storage and Feed System
Powdered Activated Carbon Injection System
ADA-ES Full-Scale Evaluation of Sorbent Injection on PRB Unit with an SDA/FF
Addition of Sorbent Injection for Mercury Control
Simplicity of Hg Removal with PAC
Issues to be Resolved with Sorbent Injection Technology

Sorbent Injection

Impact on ESP & FF??

Impact on Ash??

Hg Removal??

Ash and Sorbent

Hg CEM

ESP or FF
ADA-ES Hg Control Program: Phase I

• Full-scale field testing of sorbent-based mercury control on coal-fired boilers.

• Primary funding from DOE National Energy Technology Laboratory (NETL).

• Cofunding provided by:
 – Southern Company;
 – We Energies;
 – PG&E NEG;
 – EPRI;
 – Ontario Power Generation;
 – TVA;
 – FirstEnergy;
 – Kennecott Energy; and
 – Arch Coal.
PAC Installations on Various Coal-Burning Power Plants

- Eastern Bituminous
- ND Lignite
- PRB
- PRB
- Eastern Bituminous

(Images of PAC installations at various locations)
<table>
<thead>
<tr>
<th>Site</th>
<th>Coal</th>
<th>Equipment</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaston</td>
<td>Low-S Bit</td>
<td>FF</td>
<td>ADA-ES</td>
</tr>
<tr>
<td>Pleasant Prairie</td>
<td>PRB</td>
<td>C-ESP</td>
<td>ADA-ES</td>
</tr>
<tr>
<td>Brayton Point</td>
<td>Low-S Bit</td>
<td>C-ESP</td>
<td>ADA-ES</td>
</tr>
<tr>
<td>Abbott</td>
<td>High-S Bit</td>
<td>C-ESP/FGD</td>
<td>Apogee</td>
</tr>
<tr>
<td>Salem Harbor</td>
<td>Low-S SA Bit</td>
<td>C-ESP</td>
<td>ADA-ES</td>
</tr>
<tr>
<td>Stanton 10</td>
<td>ND Lignite</td>
<td>SDA/FF</td>
<td>Apogee</td>
</tr>
<tr>
<td>Laskin</td>
<td>ND Lignite</td>
<td>Wet P Scrbr</td>
<td>Apogee</td>
</tr>
<tr>
<td>Coal Creek</td>
<td>ND Lignite</td>
<td>C-ESP</td>
<td>ADA-ES</td>
</tr>
<tr>
<td>Lausche</td>
<td>Low-S Bit</td>
<td>C-ESP</td>
<td>Sorbent Tech</td>
</tr>
<tr>
<td>Cliffside</td>
<td>Low-S Bit</td>
<td>H-ESP</td>
<td>Sorbent Tech</td>
</tr>
</tbody>
</table>
Full-Scale Tests of Sorbent Injection
On-Going and Scheduled: 2004-2005

<table>
<thead>
<tr>
<th>Site</th>
<th>Coal</th>
<th>Equipment</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaston</td>
<td>Low-S Bit</td>
<td>FF</td>
<td>ADA-ES</td>
</tr>
<tr>
<td>Holcomb</td>
<td>PRB</td>
<td>SDA/FF</td>
<td>ADA-ES</td>
</tr>
<tr>
<td>Arapahoe</td>
<td>PRB</td>
<td>FF</td>
<td>ADA Tech</td>
</tr>
<tr>
<td>Stanton 10</td>
<td>ND Lignite</td>
<td>SDA/FF</td>
<td>Apogee</td>
</tr>
<tr>
<td>Yates 1</td>
<td>Low-S Bit</td>
<td>ESP/FGD</td>
<td>URS</td>
</tr>
<tr>
<td>Yates 2</td>
<td>Low-S Bit</td>
<td>ESP</td>
<td>URS</td>
</tr>
<tr>
<td>Leland Olds</td>
<td>ND Lignite</td>
<td>C-ESP</td>
<td>EERC</td>
</tr>
<tr>
<td>Meramec</td>
<td>PRB</td>
<td>C-ESP</td>
<td>ADA-ES</td>
</tr>
<tr>
<td>Buck</td>
<td>Low-S Bit</td>
<td>H-ESP</td>
<td>SorbTech</td>
</tr>
<tr>
<td>St. Clair</td>
<td>PRB/Bit</td>
<td>C-ESP</td>
<td>SorbTech</td>
</tr>
<tr>
<td>Miami Fort</td>
<td>High-S Bit</td>
<td>C-ESP</td>
<td>ADA Tech</td>
</tr>
<tr>
<td>Conesville</td>
<td>High-S Bit</td>
<td>ESP/FGD</td>
<td>ADA-ES</td>
</tr>
<tr>
<td>Nanticoke</td>
<td>PRB/Bit</td>
<td>ESP</td>
<td>ADA-ES</td>
</tr>
<tr>
<td>Arapahoe</td>
<td>PRB</td>
<td>FF</td>
<td>ADA Tech</td>
</tr>
<tr>
<td>Antelope Valley</td>
<td>ND Lignite</td>
<td>SDA/FF</td>
<td>EERC</td>
</tr>
<tr>
<td>Stanton 1</td>
<td>ND Lignite</td>
<td>C-ESP</td>
<td>Apogee</td>
</tr>
<tr>
<td>M.R. Young</td>
<td>ND Lignite</td>
<td>FGD</td>
<td>EERC</td>
</tr>
<tr>
<td>Monticello</td>
<td>TX Lignite</td>
<td>FGD</td>
<td>EERC</td>
</tr>
</tbody>
</table>
Effect of Flue Gas Characteristics

• The capacity of sorbents to capture mercury decreases at higher temperatures.

• Chlorine and other trace acid gases play a significant role in the performance of PAC.
Hg Capture vs. Temperature (w/ACI)

Mercury Removal (%) vs. Sorbent Injection Rate (lb/Macf)

- ESP Bitum 300F
- ESP - Bitum 350F
Enhancing Mercury Removal for Western Coals

Cl, Br, F, I

Sorbent Injection

Cl, Br, F, I

ESP or FF

Ash and Sorbent

Hg CEM

Cl, Br, F, I

Cl, Br, F, I
Enhanced Hg Removal with Halogenated Sorbents for Western Coals

![Graph showing Hg Removal vs. Injection Concentration for different coal samples.]

- DARCO FGD Holcomb
- FGD-E3 Holcomb
- Long Term FGD-E3 Holcomb
- DARCO FGD Stanton U10
- FGD E3 Stanton U10
- BPAC Stanton 10
- KNX + FGD Holcomb

Injection Concentration (lb/MMacf at ~ 29°F)

Hg Removal (%)
Ash Issues

- The mercury captured by PAC, LOI, and ash appears to be very stable and unlikely to reenter the environment.
- The presence of PAC will most likely prevent the sale of ash for use in concrete.
- Several developing technologies to address the problem:
 - Separation
 - Combustion
 - Chemical treatment
 - Non-carbon sorbents
 - Configuration solutions such as EPRI TOXECON™
TOXCON™ Configuration

Coal → Electrostatic Precipitator → Fly Ash (99%) → Sorbent Injection → Fly Ash (1%) + PAC → PJFF
Long-Term Testing of TOXECION™

Overall Hg Removal > 85%
EPRI TOXECO® Configuration

10% of Fly Ash + Sorbent
Sorbent recycle
Sorbent regeneration or disposal

90% of Fly Ash
Sell for use in concrete

Coal

Hg Sorbent

Ash Sales
Full-Scale Performance of TOXECON 2™

Mercury Removal (%) vs. Sorbent Injection Rate (lb/Macf)

- Mid-ESP Injection @ Coal Creek
- Upstream ESP Injection @ P4
Costs for Mercury Control

• EPA Study: Srivastava et al., 2004
 – 80-90% Control for all plants: 0.003-3.096 mills/kWh
 – 80-90% Control for majority of plants: 0.003 to 1.9 mills/kWh

• DOE Study: Hoffmann and Brown, 2003
 – 70-90% Control for Bituminous Coals: 1.27 to 2.15 mills/kWh
 – 60-90% Control for Subbituminous Coals: 1.91 to 2.36 mills/kWh
Costs of Mercury Control Depend on Plant Size Not on Amount Removed

- Costs of mercury control are unrelated to the amount of mercury captured
 - Sorbent Injection Technology
 - SCR/FGD
 - Catalytic Oxidation
 - Other Developing Technologies
Regulatory Parameters from a Control Device Perspective

1. Long Term Averaging
2. Dual Limit
 • Removal Efficiency
 • Emission Limit
3. Flexibility in Achieving Mercury Removal
 • Accounts for site by site variation in performance
 • Enhances cost effectiveness
 • Reduces risks associated with guarantees
4. Mechanism to Encourage Early Adoption
 • Offset risks with new technology
 • Provide increased experience base
 • Reduce potential impacts on generation
 • Soft landing reduces cost impacts on consumers
 • Banking
Conclusions on ACI Performance

- AC injection can effectively capture elemental and oxidized mercury from subbituminous and bituminous coals.
- There will be differences in site to site performance of ACI due to differences in coal, equipment, and flue gas characteristics.
- Fabric filters provide better contact between the sorbent and mercury than ESPs, resulting in higher removal levels at lower sorbent costs.
- Long-term results are promising showing consistent Hg removal greater than 85%.
- Flexibility in a regulation provides the best framework to take advantage of a rapidly developing technology.